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Introduction
 

Why Music? 

As humans, we like to believe that creativity and intelligence are things that only we can be 
capable of. However, as technological advancements have shown, machines are becoming increasingly 
capable of completing tasks previously meant to be uniquely human. Music composition is one of those 
things. In this project, we raise the question of whether or not a computer program, specifically a neural 
network (NN), is able to create music? And after this, we also need to consider how its output compares 
to a human composer, and how the output can even be considered “real”? 
 

The Problem 

In order to create what we have proposed, a neural network capable of performing music 
composition, there are several problems we need to address: 
 
1. A Feed-Forward model (FFNN) is not sufficient. What type of model can we use instead? 
2. This will still be supervised learning, but what cost function should we use for our model? 
3. How do we convert Musical Instrument Digital Interface (MIDI) data to a usable format for our NN? 
4. How do we judge a composition as “good enough”? 

 

Background Research 

In order to begin, we had to find sources where sequential data were used; a quick online search 
resulted in papers with one common characteristic: they all used recurrent neural networks (RNNs) as the 
underlying structure in order to solve various problems. These included projects done by Facebook and 
Google where they used RNNs to model speech and video facial recognition in real time (Hak 2014) 
(Ranzato 2016). Character-level language models also used RNNs (Karpathy 2015). Going through all of 
these, we eventually came across Daniel Johnson’s “Biaxial Long Short-Term Memory Recurrent Neural 
Network” architecture (Johnson 2017), which was able to handle a song’s time and note data very 
effectively. We used this as our starting point for this project. 

Methodology
 

Setup 

For our development environment, we needed to download and install Theano, a numerical 
computation library for Python with support for neural network frameworks. Explicitly, we followed the 



instructions shown here: http://deeplearning.net/software/theano/install_windows.html#install-windows. 
We ensured we had the following dependencies installed (in the following order!): 

● Windows OS 64-bit 
● Microsoft Visual Studio 2015 
● NVIDIA CUDA drivers and SDK version 8.0: https://developer.nvidia.com/cuda-zone  
● Anaconda2 4.3.0 (which includes the following modules) 

○ CPython g++ (gcc) compiler http://tdm-gcc.tdragon.net/  
○ Python 2.7.13 
○ NumPy 1.11.3 
○ SciPy 0.18.1 

● Additional Python modules installed 
○ Theano 0.8.2 
○ theano-lstm 0.0.15 
○ python-midi 0.2.4 

● Microsoft Visual C++ Compiler for Python 2.7: 
https://www.microsoft.com/en-us/download/details.aspx?id=44266  

 
After all these are installed, running our main.py  file in the top directory should work fine. 

 

Dataset: Classical Piano 

Okay, so once we have our environment setup, we had to find a good source of data that we could 
pull from and use. We chose classical piano MIDI files, since they are conveniently formatted in a way 
that we can easily parse through them. These are located at: http://www.piano-midi.de/midicoll.htm 
(Kreuger, 2016). These were the same files that Johnson used in his paper. 
 

MIDI Files 

All of the files in the dataset are MIDI files. These files are structured in the following way: 
● ‘song.mid’ 

○ Tracks 
○ Events 

■ Time signature 
■ Key signature 
■ Note 

● Ticks (time) 
● Pitch (frequency) 
● Velocity (loudness) 

We only need the ticks and pitch data from these files. 
 

http://tdm-gcc.tdragon.net/
https://developer.nvidia.com/cuda-zone
https://www.microsoft.com/en-us/download/details.aspx?id=44266
http://www.piano-midi.de/midicoll.htm
http://deeplearning.net/software/theano/install_windows.html#install-windows


Parsing a MIDI File 

Source: midi_to_statematrix.py: line 8 
 
In order to parse through our MIDI files, we find specific NoteEvents, and convert them into binary tuples 
that represent whether a note is played or articulated (or both) at a certain timestep. 
 

● [1,1] = Played and articulated 
● [1,0] = Played but not articulated 
● [0,0] = Not played or articulated 
● [ [0,0], [1,1], [1,0]… [0,0] ] (78 possible notes, so 78 tuples) 

 
A part of a song is then represented as a list of these lists of tuples: 
 

[ [ [0,0], [1,1], … [0,0] ], t = 0 
  [ [0,0], [1,1], … [0,0] ], t = 1  
  [ [0,0], [1,1], … [0,0] ], …, t = 2 ... 
  [ [0,0], [1,1], … [0,0] ] ] t = N 
 

Input Layer: Binarization of MIDI Data 

Source: data.py: lines 21, 34, 38, 56, 64 
 

After parsing, we now have to construct a binarized feature set vector in order to feed into our NN. This 
was done in the following way: (1 timestep = 1 input vector) 
 

● Position [3] → C1 (Index of tuple) 
 

● Pitch Class A, Bb, C, C#, D, D#, etc. (Index of tuple % 12) 
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] → C 

 
● Previous Vicinity ± 1 octave in last timestep (played and/or articulated) 

[.., 1, 1, 1, 0, ..] → C4 articulated, D4 played but not articulated 
 

● Previous Context number of each pitch class in last timestep (relative to note) 
[1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0] → Cmaj 

 
● Beat measures split into 1/16ths (reverse binary encoded) 

[0, 1, 0, 1] → 10; 10/16 = 5/8 = 2/4 + ⅛ 
 
The rationale for these features comes from Johnson’s paper as follows: 
 



“ 
● Position [1]: The MIDI note value of the current note. Used to get a vague idea of how high or low a given 

note is, to allow for differences (like the concept that lower notes are typically chords, upper notes are 
typically melody). 

● Pitchclass [12]: Will be 1 at the position of the current note, starting at A for 0 and increasing by 1 per 
half-step, and 0 for all the others. Used to allow selection of more common chords (i.e. it's more common to 
have a C major chord than an E-flat major chord). 

● Previous Vicinity [50]: Gives context for surrounding notes in the last timestep, one octave in each 
direction. The value at index 2(i+12) is 1 if the note at offset i from current note was played last timestep, 
and 0 if it was not. The value at 2(i+12) + 1 is 1 if that note was articulated last timestep, and 0 if it was not. 
(So if you play a note and hold it, first timestep has 1 in both, second has it only in first. If you repeat a 
note, second will have 1 both times.) 

● Previous Context [12]: Value at index i will be the number of times any note x where (x-i-pitchclass) mod 
12 was played last timestep. Thus if current note is C and there were 2 E's last timestep, the value at index 4 
(since E is 4 half steps above C) would be 2. 

● Beat [4]: Essentially a binary representation of position within the measure, assuming 4/4 time. With each 
row being one of the beat inputs, and each column being a time step. ” 

 

Recurrent Neural Networks 

The first thing we had to do was understand how RNNs functioned and how they differed from 
FFNNs. A 1-hidden layer FFNN consists of a fixed-size input vector multiplied by a weight matrix, which 
results in the hidden layer, which is then multiplied by another weight matrix in order to get the output 
vector. This structure can be shown as follows: 

 

 
 

Now, a RNN differs from this in the fact that its hidden layer units also feed into themselves, creating a 
sort of time axis. This can be shown below: 
 



 
 
As you can see above, the time axis can be unfolded to show each timestep of the NN. For RNNs, the 
states of each recurrent unit depend on the values in the last timestep as well as the new input. This is 
what sets RNNs apart from traditional FFNNs. 
 

Vanishing/Exploding Gradients 

The problem with backpropagation algorithms on RNNs is that when calculating the weight 
adjustments for each layer, the weight matrix is multiplied T times, where T is the total number of 
timesteps. With too many timesteps, this can cause what’s called a “vanishing” or “exploding” gradient, 
where the weight adjustment becomes very large (too much correction) or very small (no correction at 
all), if the weight matrix values are > 1 or < 1 respectively. This prevents us from properly training our 
network. A visual representation of this phenomenon is shown below: 

 
 

Long Short-Term Memory (LSTM) 

The LSTM model for neuronal units allows us to solve the problem of vanishing and exploding 
gradients by introducing a mechanism for “forgetting” information (Hochreiter, 1997). We add a “forget 
gate” as well as output and input gates, which all modulate the amount of information we’re letting out of 
the model. Each of these gates have their own weight matrices that are also maintained via the 
backpropagation model, allowing the NN to decide what to forget and what not to forget. 

 



There are 4 gates in total (per neuron) that each take in the activity of the current neuron and 
multiply by an individual weight matrix, This result is then passed through a nonlinear associator, 
bounding the final value. A visual representation of this mechanism is as follows: 

 
 

Hidden Layers: Biaxial NN Architecture 

Source: model.py: line 78 
 

Johnson’s paper describes a novel NN architecture with 4 recurrent layers, called the Biaxial 
LSTM RNN. The first two layers are recurrent in the time axis, but independent in the note axis. This 
means that each node feeds into itself but not to the other nodes in the same layer (taking input from its 
previous state and the previous layer). This allows for these layers to learn the time-based sequential 
patterns of rhythm, beat, and melody. The other two layers are the opposite: recurrent in note axis, 
independent in time. This means that each node feeds into the other nodes in the same layer but not itself 
(taking input from the previous layer and other notes). This allows for these layers to learn the concurrent 
patterns of chords and harmony. Initialization of this network is handled by Theano. 

 

 



Cross-Entropy Cost Function 

Source: model.py: line 222 
 

In order to compute our error to be used for training our network, we need to define some sort of 
cost function. The output of this function will be the value we need to minimize during training. Our error 
is calculated by taking the binary input vector and comparing it to the probability output vector. 
 
We calculate the according cross-entropy for each timestep, defined below, and we sum up these values 
for a total aggregate error value. 
 

 
 
In our code, we actually used a vectorized form of this equation in order to help reduce the cost of 
computation for training our network. 
 

Backpropagation 

Source: model.py: line 225 
 

The cost calculated is then fed into our backpropagation algorithm in order to adjust the weights 
of our network (W). 

 
We use the ADADELTA (Zeiler, 2012) adaptive learning rate backpropagation algorithm in order to train 
our network. 

 

Output Layer: MIDI Reconstruction 

Source: model.py: lines 253-258, midi_to_statematrix.py: line 90 
 

For each note in a given timestep, we output a play and articulation probability. Articulation here 
means that a note is “hit” during this time. For this reason, if we have a note not being played, it can’t be 



articulated. If a note is played but not articulated, then it will be held. This can only occur if the note had 
been played on the last timestep. 

 
We check whether these values determine whether a note is played or articulated by using a 

uniform-distribution random number generator and comparing the value to the corresponding probability 
threshold. If the random number is less than the play probability then it will be played, similarly if a 
second random number is less than the articulate probability then it will be articulated (this is only 
checked when the note is already determined to be played). Once our model is created and trained, there 
should be only high probabilities for notes that make melodic and harmonic sense with the previous 
timestep. 

Results
 

Output Compositions 

We have included a folder of samples, named REPORT_SAMPLES, with the following naming 
convention: ‘h1-h2-h3-h4-05-i.mid’, where the first four numbers, h1 to h4 are the number of units for 
each hidden layer of the neural network, and the last number is the number of training iterations after 
which the model was tested to produce that specific sample MIDI output. 

  
During training, we also printed the model’s error amount for that epoch to see if the quality of 

the song samples varied systematically with the error. In general, a higher error value meant a lower 
quality song. Lower quality here means that the song sample did not sound human-made (strange timing, 
non-matching chords/melodies). When error was at its largest, we observed recordings of almost every 
note played at every timestep, resulting in a distorted, unpleasant white noise. As the error decreased, 
melodies and a consistent beat could be heard increasingly so. We also noticed that lower error didn’t 
necessarily mean a good sample – though samples with smaller errors tended to sound more pleasant. 

 
We noticed that as the number of iterations increased, the error decreased on average. This makes 

sense, as our model is designed to decrease the error. 
 
We also varied the size of our models to see differences in sample quality. We noticed that as the 

size of the neural network increases, the number of training iterations it takes for our model to converge 
on a minimum decreases. So, between two different-sized models with the same number of training 
iterations – the one with more neurons tended to sound more human-made on average.  

 

Turing Test 

Because there is no way to truly measure the quality of our songs (since it’s subjective), we 
decided to run a Turing test on a small sample of 20 of our friends. 

 



We asked each of them to pick out the actual human-created piece out of two audio clips. These 
two audio clips included our “best” 16-second sample from our network as well as an actual 16-second 
clip from a piece by classical composer Isaac Albéniz. “Best” here means that Michael and I deemed it to 
be the most organic and human-like out of all the other samples. Our artificial piece would be deemed 
successful if participants could not tell the difference between the human-made and the NN-generated 
samples, and the selection would be no different than as if people chose them at random chance: 
50%-50%. We found that 11 out of 20 subjects (55%) chose the NN-generated sample to be the 
“human-created” sample, showing that our NN, at its best sounds no different from an actual human 
composer. 

 
In order to test the overall performance of our model, we also asked each subject to classify 

whether or not a sample was human-made or NN-made for a batch of 5 randomly selected samples, for a 
total of 100 samples. Every sample was generated by our NN with a different set of input songs.  What we 
found was that 34 out of the 100 randomly played samples were categorized as “human-created.” This 
means that our NN can trick a person into thinking its compositions are human created 34% of the time. 

 

Problems with the Model 

One of the problems we noticed about our model was that for any simulations for longer than 
approximately 40 seconds, our model would deteriorate and only either play a single repeated note over 
and over again ad infinitum or it stayed silent. We believe that this is the result of the network getting 
caught at a local minimum for error and the best option is to play nothing or a single note and time, 
thereby minimizing the error. 

 
Too low of an error value also caused the model to completely replicate songs and there would be 

no “creativity” by the model. This may not necessarily be a failure, but it’s not the purpose of our model 
which is to create novel and unique music. We found that there is no real good “error threshold” by which 
we could discern “good” pieces from “bad” ones. Sometimes high error values could still produce unique 
and interesting music samples. However, there seemed to be an amount of error that produced 
“better-sounding” samples at a higher frequency than other error rates. But this amount of error varied 
upon changing input songs and the dimensions of our NN. 

Conclusion
 

https://news.developer.nvidia.com/ai-composer-creates-music-for-films-and-games/ 
 

A quick look at the above link, shows the state of the art and potential in this field. AIVA 
Technologies used CUDA, TITAN X GPUs, and TensorFlow to create an entire symphonic composition 
all done using neural networks. Once this technology becomes more and more mainstream, we will see an 
increasing number of NN-generated music for games, film, and other entertainment. The applications for 
RNNs are immense and the implications of more complex NN architectures being able to replicate and 

https://news.developer.nvidia.com/ai-composer-creates-music-for-films-and-games/


surpass human ability are far-reaching. We will soon have artificial technologies capable of producing art, 
writing books, and holding conversation. 
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