RNN Music Composer

Alvin Vuong & Michael Evans Psych 186B

The Problem

How do we compose music with a neural network (NN)?

- Feed-Forward model (FFNN) is not sufficient; what to use instead?
- Still supervised learning, but how to calculate our error/cost?
- How to convert MIDI data into a usable format for a NN?
- What constitutes as a "good enough" composition?

Why is it interesting?

- Music composition is intuitively assumed to be a humanly creative fine art
- Humans have to build off of other musicians, so why is a NN different?

• Can you tell which song is made by a human?

Past Literature

• Acoustic Modeling for Speech Recognition (Hak 2014) (Google)

• Facial Recognition from Video Sequences (Ranzato 2016) (Facebook)

• Character-Level Language Models (Karpathy 2015)

What we did - Overview

• FFNN vs. RNN

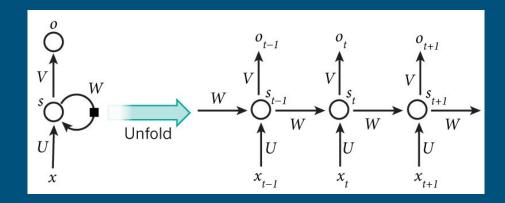
- FF for independent/fixed length data
- R for sequential & dependent data

• LSTM

- Vanishing/Exploding Gradients
- Biaxial LSTM RNN

Recurrent NN

- Takes in sequence data, and outputs sequence
- This differs from a FFNN because it can take time into account



Cross-Entropy Cost/Error

- Also used for FFNNs
- Compute cost:
 - Compute output of NN
 - Compare output to original song(s)

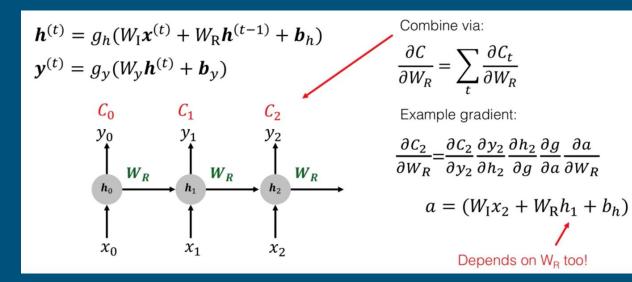
Activation function

Regularization Parameter

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log((h_{\Theta}(x^{(i)}))_{k}) + (1 - y_{k}^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_{k}) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_{l}} \sum_{j=1}^{s_{l+1}} (\Theta_{j,i}^{(l)})^{2}$$
Output Input Output Input Regularization Term

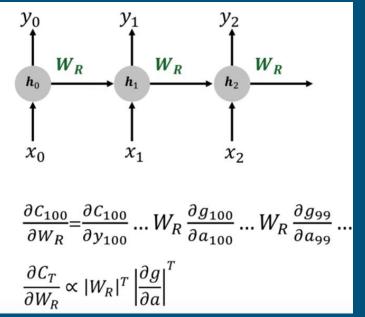
Vanishing/Exploding Gradients pt 1

- Cost fed into backpropagation algorithm to adjust weights (W_R)
- Used ADADELTA (Zeiler, 2012)



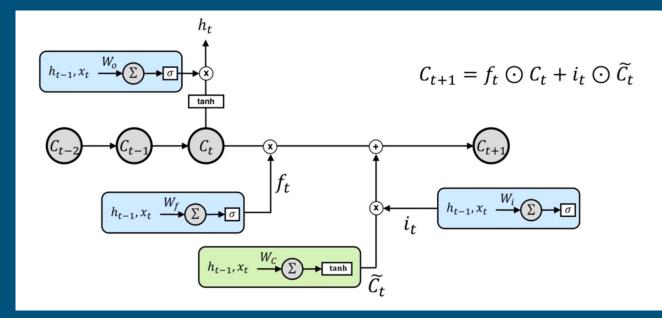
Vanishing/Exploding Gradients pt 2

- With too many timesteps, gradients can approach become:
 - very small (too little change)
 - very big (too much change)
- Prevents us from properly training our network



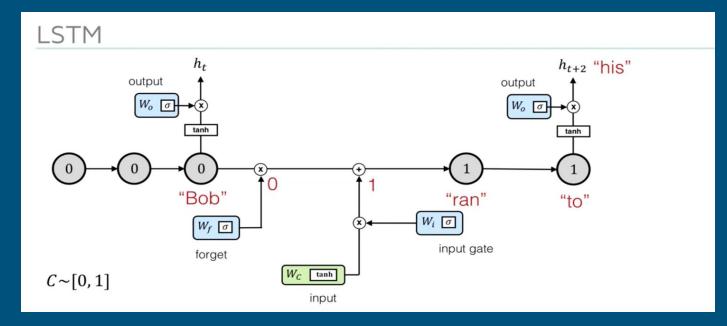
LSTM (Long Short-Term Memory)

• Solves the exploding/vanishing problem by "forgetting"



LSTM Example

• Binary output: Gender of subject (0 = female, 1 = male)



MIDI Files

• 'song.mid'

- Tracks
 - Events
 - Time signature
 - Key signature
 - <u>Note</u>
 - <u>Ticks (time)</u>
 - Pitch (frequency)
 - Velocity (loudness)

MIDI Parsing

- NoteEvents are converted into binary tuples that represent whether a note is played or articulated (or both) at a certain timestep
 - [1,1] = Played and articulated
 - [1,0] = Played but not articulated
 - [0,0] = Not played or articulated
 - [[0,0], [1,1], [1,0]... [0,0]]

(78 possible notes, so 78 tuples)

- A part of a song is then represented as a list of these lists of tuples
 - $\begin{bmatrix} [[0,0], [1,1], ... [0,0]], & t = 0 \\ [[0,0], [1,1], ... [0,0]], & t = 1 \\ [[0,0], [1,1], ... [0,0]], ..., & t = 2 ... \\ [[0,0], [1,1], ... [0,0]] \end{bmatrix} & t = N$

MIDI Binarization (Input Layer)

- Need to convert parsed data into usable input to NN (1 timestep = 1 <u>input vector</u>)
 - Position [3] -> C_1 (Index of tuple)

Beat

- Pitch Class
 A, Bb, C, C#, D, D#, etc. (Index of tuple % 12)
 [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] -> C
- Previous Vicinity ± 1 octave in last timestep (played or articulated)
- $\circ \quad \mbox{Previous Context} \qquad \mbox{number of each pitch class in last timestep (relative to note)} \\ [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0] \rightarrow C_{maj}$

measures split into 1/16ths (reverse binary encoded) [0, 1, 0, 1] -> 10; 10/16 -> 5/8 -> 2/4 + 1/8

Biaxial NN Architecture (Hidden Layers)

Novel NN architecture: "Biaxial LSTM RNN" (Johnson 2017)

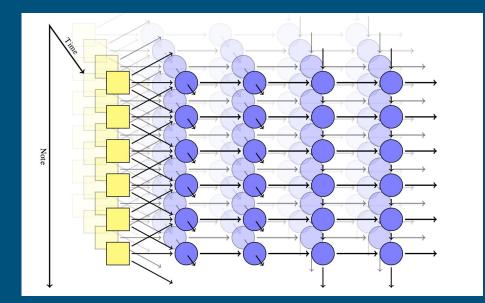
• 2 Time Layers

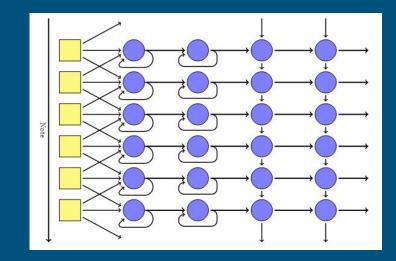
- Recurrent in time axis, independent in note axis
- Learns the sequential patterns (rhythm/beat/melody)

• 2 Pitch Layers

- Recurrent in note axis, independent in time axis
- Learns to make notes sound pleasant together (chords/harmony)

Structure of the Model





MIDI Reconstruction (Output Layer)

For each note:

- Play Probability
 - \circ the probability that this note should be chosen to be played

• Articulate Probability

the probability the note is articulated, given that it is played.
 (This is only used to determine rearticulation for held notes.)

Results

• How it evolves:

- Neural network layer sizes
- Number of iterations
- Input variability

• Recordings

0	10, 10, 5, 5, (5 iterations)	Error = ~37,000
0	50, 50, 20, 10, (500 iterations)	Error = ~6,000
0	200, 200, 100, 50, (1900 iterations)	Error = ~150

- A composition can be judged using the Turing Test
 - Ask people if it was computer generated or not amongst real samples of songs

Conclusion

- LSTM Recurrent Biaxial Neural Network
- The more songs, the more "average" sounding
- Interesting models do not necessarily have the smallest error
- Implications from this model stretch far beyond music

Breaking the Model

Loading in too many songs

- "Music composition by committee"
- Naturally removes all creativity and variation
- Loading in only one song
 - \circ Error of zero could actually copy the song; this defeats the purpose of the NN

Next Steps

- CSSA Conference "Where Science Meets the Arts/Senses"
- Train it on various genres of music
- Create a neural network to judge the output
- See if the network learns off of reversed songs
- Reciprocal training neural networks

Works Cited

- Johnson, Daniel (2017). "Generating Polyphonic Music Using Tied Parallel Networks." EvoMusArt 2017. http://www.hexahedria.com/files/2017generatingpolyphonic.pdf
- Kreuger, Bernd (2016). "Classical Piano MIDI Page." http://www.piano-midi.de/midicoll.htm
- Nervana (2016). "Recurrent Neural Networks." <u>https://www.youtube.com/watch?v=Ukgii7Yd_cU</u>
- Ranzato, M., Chopra, S., Auli, M., Zaremba, W. (2016). "Sequence Level Training with Recurrent Neural Networks." ICLR 2016. https://research.fb.com/wp-content/uploads/2016/11/sequence_level_training_with_recurrent_neural_networks.pdf
- Sak, H., Senior, A., Beaufays, F. (2014). "Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling." Interspeech 2014. <u>http://193.6.4.39/~czap/letoltes/IS14/IS2014/PDF/AUTHOR/IS141304.PDF</u>
- Zeiler, M.D. (2012). "ADADELTA: An Adaptive Learning Rate Method." https://arxiv.org/abs/1212.5701

