
Brain Network Connectivity &
Intelligence

CS170A Final Project

Alvin Vuong

Introduction

Why Brain Connectivity?

Connectivity across regions in the brain can be characterized as either functional (FC; correlated
fluctuations in brain activity as measured by fMRI data) or structural (SC; white matter pathways as
measured by diffusion-weighted MRI data, dMRI). Emerging studies suggest that the patterns of
connectivity across brain regions that make up distinct cognitive networks can partially explain individual
differences in behavioral traits.

Specific brain networks correlate with particular modes of behavior and cognition. The

Fronto-Parietal Network (FPN) and Cingulo-Opercular Network (CON) have been shown to be associated
with aspects of higher-order cognitive functions. The CON has been shown to down-regulate activity in
the Default Mode Network (DMN) by acting as a cognitive “switchboard”, preventing the DMN from
engaging in self-referential thinking, and thus allowing one to concentrate on the task at hand

These networks are commonly associated to be important for problem solving abilities, or even

fluid intelligence. One benchmark of fluid intelligence is the domain-invariant ability to identify and
extrapolate patterns across distantly related ideas. It would be interesting to see if brain connectivity could
predict or explain differences in individual fluid intelligence scores.

About the Dataset

The Human Connectome Project (HCP) is an inter-institutional effort attempting to map out the
human connectome, a comprehensive map of neural connections in the brain, as accurately as possible in
a large number of normal adults. Figuring out how the brain’s connections are laid out will allow us
humans to better understand how we think, why we act, and what makes each of us different from
everyone else.

The 900-subject dataset is freely available online to the scientific community and was obtained
using cutting-edge MR hardware. The MR data acquisition has already been optimized through
refinements to pulse sequences and key pre-processing steps. The dataset mainly contains two different
types of MR imaging data: diffusion imaging (structural data) and resting-state fMRI (functional data).
There is also task-state fMRI and various behavioral test data as well. Any subset of the dataset can be
requested, so it is possible to only grab a certain number of subjects and their tests/scans. Here is a link to
the full dataset and options to grab a partial subset of it:
http://www.humanconnectome.org/courses/2015/exploring-the-human-connectome.php. This contains the
raw scan data for each subject as well as their behavioral attributes.

http://www.humanconnectome.org/courses/2015/exploring-the-human-connectome.php

Modifications to the Dataset

Structural Connectivity (dMRI) Preprocessing

Each subject’s data contains a diffusion imaging scan as well as a resting-state fMRI scan.
Diffusion imaging is used to chart the trajectories of fiber bundles throughout the brain’s white matter. In
order to process these scans for this project, we must do some preprocessing.

Figure 1: Diffusion Tensor Images. Various levels of a diffusion brain scan image; white matter
tracts/pathways of the brain can be seen very clearly

The Oxford Centre for Functional MRI of the Brain (FMRIB) offers a software library (FSL)

containing many algorithms for processing brain scan data. Their documentation and instructions can be
found here: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. The FSL contains eddy current correction (EDDY),
fitting/resizing/reslicing (FLIRT), Bayesian estimation of diffusion parameters (BEDPOSTX), and
probabilistic tractography (PROBTRACKX) algorithms that we used to run on the diffusion images in
order to produce a condensed structural “connectivity” map for each subject.

Each of these connectivity maps are a 264 x 264 matrix with each element in the matrix

representing the connectivity between two regions of interest (ROIs) from the diffusion image. Each ROI
is a part of a connected network in the brain defined by Steven E. Petersen in the following paper: Power,
J. D. et al. (2011). Functional network organization of the human brain. Neuron, 72.4, 665-678. All 264
ROIs are parcellated into 14 cognitive networks that were identified by the meta-study by Power and
Petersen as belonging to 14 distinct cognitive regions. Each ROI was then used as a “seed” to assess its
anatomical connectivity with the rest of the brain, allowing us to infer the connectivity across all pairs of
ROIs using a probabilistic tractography algorithm.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Figure 2: Petersen Parcellation of Cognitive Networks . Each colored node represents an ROI and each
color represents one of the 14 cognitive networks as defined in the Petersen paper.

After doing this, we end up with a 264 x 264 “SC matrix” or structural connectivity matrix for

each subject.

Functional Connectivity (rs-fMRI) Preprocessing

A very similar procedure was used to process the resting-state fMRI scans as well. We extracted
the mean blood-oxygen-level-dependent (BOLD) contrast signal from voxels within each ROI at each
time-point of the fMRI scan. Then we correlate each ROI’s mean time series to every other ROI’s mean
time series and each correlational value represents the functional “connectivity” of a pair of ROIs. These
values can be arranged in the same fashion as the structural connectivity values to create functional
connectivity matrices, where each value represents the synchronicity of a BOLD signal between two
different ROIs. We call this an “FC matrix” or functional connectivity matrix.

Petersen Parcellation & Network-Membership

 The indexing of the Petersen parcellation scheme (which ROIs belong to which cognitive
network) can be found in the parcellations_petersen.xlsx file. We will extract this
information later to index ROIs properly when performing our analyses. Below is a screenshot of a part of
the file.

Figure 3: ROI Network Indices. In the parcellations_petersen.xlsx file, each ROI (column A) belongs to a
cognitive network (column AK).

Objective

For this project, we will examine these processed connectivity matrices. We can see if brain
connectivity in certain networks or regions in the brain like the DMN, FPN, and/or CON inherently
predict behavioral attributes like fluid intelligence. These connectivity matrices can be used to train a
Support Vector Machine classifier or used to perform Ridge/LASSO regression to predict behavioral
traits would be an extremely novel approach. While the raw dataset is large (terabytes), the connectivity
matrices are no more than a couple hundred megabytes, allowing for fast, efficient analysis. Most of the
effort for this project will be performing the regressions properly and ensuring that the predictions are
based on a properly trained model. Then, evaluating the accuracy of the predictions should be
straightforward.

IMPORTANT:
MODIFIED SC AND FC DATASET (masterCell.mat) UPLOADED to Google Drive and link sent
through email.
(CCLE has a 100MB restriction, and this dataset is 900MB).
All other files are in the uploaded ZIP file on CCLE.

Log

Preprocessing

The first thing to do here is to get the raw diffusion and functional scans to the SC and FC
matrices that we discussed in the previous section. In the Ordered folder, shell and Matlab scripts can
be found to do MRI processing in order to get the data to a condensed SC and FC set of matrices. These
scripts are numbered in the order of what to run first. This preprocessing was mostly done for many of the
subjects prior to the start of CS 170A Fall 2016, while I worked as a research assistant for the UCLA
Rissman Memory Lab. Running this preprocessing stage on the raw data took months.

Since most of the filtering of noise has already been done on the scans (courteously done by the

HCP), we mostly just have to worry about spatial preprocessing or standardizing the sizing/alignment for
all the scans. Realigning/fitting the images comes first; this means converting the images from MNI space
to MPRAGE space for our purposes. A more detailed description of these spaces and what they mean can
be found here: http://www.nil.wustl.edu/labs/kevin/man/answers/mnispace.html and here:
https://www.ncbi.nlm.nih.gov/pubmed/1535892. The tool we use to do this is FSL’s FLIRT (image
registration tool) script in order to resize our scans according to a template mask. The code is in
1_MNI_to_MPRAGE_Petersen.sh . The documentation on FLIRT can be found here:
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT.

After doing this, we must also reslice our images into the proper resolution.

2_Reslice_Petersen.sh does this using FLIRT as well. A good resource that explains how this all
works and why can be found here:
http://imaging.mrc-cbu.cam.ac.uk/imaging/Introduction_to_fMRI_2010?action=AttachFile&do=get&targ
et=Intro_fMRI_2010_01_preprocessing.pdf.

Now, we must run BEDPOSTX on the spatially processed scans. BEDPOSTX stands for

Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques. The X stands for
crossing fibres. The Bedpost algorithm essentially runs Markov Chain Monte Carlo sampling to build up
distributions on diffusion parameters at each voxel of the diffusion scan. It creates all the files necessary
for running a probabilistic tractography algorithm. This stage takes about 24 hours to run per scan, and
parallelized code was written to run on a multiprocessor server. Documentation for BEDPOSTX can be
found here: https://users.fmrib.ox.ac.uk/~behrens/fdt_docs/fdt_bedpost.html. The script used for this stage
is 3_bedpostX_rerun . Most of the subjects were already completed by the time I joined the Rissman
Lab. So, my job was to find unfinished subjects and run them through this process, hence the name
“rerun” on the script.

After this, we have to “seed” each ROI of a subject. This means for ROI 1, we need to create

references to all of the other ROIs and supply these to the PROBTRACKX algorithm in the next step.

http://www.nil.wustl.edu/labs/kevin/man/answers/mnispace.html
https://www.ncbi.nlm.nih.gov/pubmed/1535892
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
http://imaging.mrc-cbu.cam.ac.uk/imaging/Introduction_to_fMRI_2010?action=AttachFile&do=get&target=Intro_fMRI_2010_01_preprocessing.pdf
http://imaging.mrc-cbu.cam.ac.uk/imaging/Introduction_to_fMRI_2010?action=AttachFile&do=get&target=Intro_fMRI_2010_01_preprocessing.pdf
https://users.fmrib.ox.ac.uk/~behrens/fdt_docs/fdt_bedpost.html

4_create_target_txts_Petersen.m does this by creating .txt files for each seed containing a
reference to the other ROIs for each subject.

Then, we must run PROBTRACKX for each subject’s scan. This algorithm repetitively samples

from the distributions on voxel-wise principal diffusion directions, each time computing a streamline
through these local samples to generate a probabilistic streamline from the distribution on the location of
the true streamline. By taking many such samples, we can build up the posterior distribution on the
streamline location, also known as the connectivity distribution. The result of this can be visualized
below.

Figure 4: Connectivity Distribution for a Single ROI Seed. Parts of the image where it is red/white
indicate areas that show high connectivity with the region circled in blue (the ROI).

A connectivity distribution was formed for each of the 264 ROIs using PROBTRACKX.

Documentation for this algorithm can be found here:
https://users.fmrib.ox.ac.uk/~behrens/fdt_docs/fdt_probtrack.html. This algorithm also takes a long time
to run per subject, since each ROI has to be run separately. Parallelized code using a multiprocessor
server was once again used to cut down processing time. This is shown in 5_probtrackx_max.sh .

Finally, once all ROIs for all subjects have a connectivity distribution formed, we can read in
those values and fill up an SC matrix for each subject, where each value in the 264 x 264 matrix is a
“connectivity” value representing the connectedness between any pair of ROIs. For example, at row 2
column 3 of the matrix, the value stored there is the value associated with the connection strength
between ROI 2 and ROI 3. We simply loop through each subject and loop through each of the ROIs and
targets, then run fslstats (a tool for calculating values from image intensities) to get the connectivity
distribution for each target ROI and store them in the matrix. This is done in
6_Create_Compiled_Values.m . Now we have SC matrices for each subject!

https://users.fmrib.ox.ac.uk/~behrens/fdt_docs/fdt_probtrack.html

Figure 5: Petersen Unaveraged Structural Connectivity Matrix . What part of the Petersen_SC_unavg
matrix looks like. The diagonal values are zero, and each value represents the anatomical ROI to ROI

connection strength.

The FC matrices for each subject were already created by the Rissman Lab, and it was only a
matter of loading them in when performing analyses later. Although, we do compile all the FC matrices
into a large dataset in 24_reorg.m , which is the script that I used to compile all the SC and FC
matrices into a single .mat file: masterCell.mat . This file contains a 1x505 cell array with each
index representing a different subject. Each subject’s SC and FC matrices are stored here.

fieldnames(masterCell{1})

ans =
{
 [1,1] = ID
 [2,1] = Petersen_SC_unavg
 [3,1] = Petersen_SC_avg
 [4,1] = Petersen_FC
 [5,1] = Gordon_SC_unavg

}

The above output shows the field names for each index in masterCell . For each subject, we
can access the subject’s ID and Petersen SC and FC matrices (as well as Gordon, but we don’t use these
in this project). Note that the SC and FC matrices have values of zero along the diagonal; this is because
we don’t run PROBTRACKX from an ROI seed to itself.

SC Matrix Averaging

Because the BEDPOSTX and PROBTRACKX algorithms can be ran from either side of an ROI
pair, we can also average the two directional values to get a mean connectivity value between two ROIs.
Or we can also keep the directional value for either direction.

For example, ROI 2 could have been the seed when calculating the connectivity to ROI 20, but

then ROI 20 was also the seed at some point when calculating the connectivity to ROI 2. We can keep
these values distinct or we can average them and create an averaged SC matrix. This is what the script
7_average_connectivity.m does. It creates an averaged SC matrix for each subject based off of
their unaveraged SC matrix. This resulting matrix is symmetrical.

FC Matrix Averaging

FC matrices are already symmetrical. They do not need to be averaged. This is because when
calculating the correlation of the mean time courses between each ROI, the resulting value is the same
both ways.

Behavioral Data

Now that we have all of the SC and FC matrices in place, we should organize the behavioral data
in a useful fashion. The HCP_Q3_Release_Appendix.pdf file contains information on all the
behavioral data that was acquired for each subject. Ranging from dexterity test scores to intelligence
scores, we used this to identify which subject attributes we wanted for our analyses.

The hcp_behavioral.csv file contains all the subject behavioral data. The .csv file has
been converted to an .xls file for easier use. Note that the .xls file had to be cleaned in the following ways:

● TRUE/FALSE values had to be treated as text instead of generic types in Excel
○ This was done by selecting columns (one-by-one) and doing Data → Text-to-Columns →

Next → Next, select ‘Text’ data format, finish.
● Some behavioral_var values are invalid field names. These were altered accordingly:

○ RS-fMRI_Count
○ Non-TB_Compl
○ NEO-FFI_Compl
○ ASR-Syn_Compl
○ ASR-DSM_Compl
○ FS_L_Non-WM_Hypointens_Vol
○ FS_R_Non-WM_Hypointens_Vol

● Subject IDs must begin with a character. See code for handling.

The 8_Create_Behavioral_Struct.m script parses the now cleaned .xls file and stores
the data into a 542 x 1 struct that contains all the behavioral values for every subject.

Figure 6: Behavioral Data. The data structure can be accessed by subject ID number and then the
corresponding behavioral value of interest.

Because we want to look at intelligence scores specifically, we are mostly interested in the

PMAT24_A_CR, PMAT24_A_SI, and PMAT24_A_RTCR values. Although for our purposes, we will
only be really looking at PMAT24_A_CR.

Raven’s Progressive Matrices

The Raven’s Progressive Matrices (RPM), a pattern completion task, is one widely used measure
of general fluid intelligence. The Penn variant, or Penn Progressive Matrices (PMAT), is a shorter version
of the test with 24 items, arranged in order of increasing difficulty. In order to assess the relationship
between brain connectivity and fluid intelligence, we can examine the subjects’ scores on this test.
Subjects taking this test were presented with a series of evolving patterns. They were tasked with selected
the correct next pattern from a list of options.

Figure 6: Raven’s Progressive Matrices. A sample question from a progressive matrices test. The test
taker must identify the correct pattern out of the options that corresponds to the missing spot.

The identifier in our behavioral data structure for this test is PMAT24_A_CR (number of correct

responses out of 24). There are also PMAT24_A_SI (total number of skipped items) and
PMAT24_A_RTCR (the median reaction time for correct responses), but for our purposes we only really
are interested in PMAT24_A_CR, to see if brain connectivity can accurately predict overall score on the
PMAT.

Network Indexing

We have to also extract the Petersen parcellations and the corresponding ROI indices of each
network. The petersen_parcellation.xlsx file had to be cleaned in the following way:

● Some network names were altered so that they could comply with field name restrictions.

The 9_Create_Petersen_Networks_Struct.m script stores the data into a struct for
later use. The resulting file is stored as Petersen_Networks.mat . The following is an example of
one of the network’s, the Default Mode Network (DMN), indices.

Figure 7: Default Mode Network ROI Indices. Example of what ROI indices correspond to the Default
Mode Network as identified by Petersen in the cognitive networks meta-analysis study.

These indices will later be used to build a feature set of connectivity values to train a classifier

that will be used to predict PMAT scores. Each network contains an array of parcel IDs in the network.

Feature Set Construction

There are multiple ways to build a feature set to train our model from the connectivity data. We
can use solely SC data, solely FC data, or some combination of both, a single network, two networks,

some combination of networks, etc. Therefore, we need to define how any of our feature sets are
constructed. (All of these scripts are implemented as functions in the Scripts folder, starting from
10_features_structural.m to 18_features_sf_Interact.m).

Our feature sets were indexed and manipulated as follows:

● Intra- vs. Inter-Network Connectivity
○ Within a single network (denoted as wX)
○ Bidirectionally across two networks (bXY)
○ Unidirectionally across two networks (uXY)

● SC vs. FC

○ Structural Only (s)
○ Functional Only (f)
○ Masking the functional data to only include the values that showed either the

highest or lowest structural connectivity (f_hs, f_ls)
○ Masking the structural data to only include the values that showed either the

highest or lowest functional connectivity (s_hf, s_lf)
○ Interaction by multiplying the structural and functional connectivity values (sxf)

Single Intra-Network Connectivity

When only considering a single network, we simply look up the averaged pairwise connectivity

values between each pair of ROI indices within the network. This is essentially a handshake problem.

A set of ROI indices are first obtained by accessing our Petersen_Network struct to grab the
corresponding array of ROI indices. Then, we grab the corresponding ROI to ROI pairwise connectivity
values for all subjects that have the associated data. There will be N x (N-1) / 2 ROI pairs (closed form
solution to handshake problem). And so our feature set, will be (N x (N-1) / 2) x (# of valid subjects) for
any single-network-based feature set. A simplified version of the code is shown below.

% Retrieve network ROIs
roiList = Petersen_Networks.(net1);

%Initialize a matrix to hold pairwise connectivity values
sizeROI = length(roiList);
num_connections = (sizeROI*(sizeROI-1)/2); % Number of pairs of ROIs
feature_set = zeros(num_connections, length(subjs));

% For each subject
for s = 1:length(subjs)
 % Grab info for subject
 file_str = char(subjs(s));

 subjectID = file_str(6:end-4);

 % Get subject's data
 try
 load([structural_avg_path 'Subj_' subjectID '_avg.mat']);
 catch
 % Subject's data is partially missing. Skip.
 continue;
 end

 % Find connectivity values for each pair...
 % ...Within network
 n = 1;
 connectivities = zeros(num_connections, 1);
 for i = 1:(length(roiList)-1)
 for j = (i+1):length(roiList)
 connectivities(n) = mean_non_zero_avg(roiList(i),
roiList(j));
 n = n + 1;
 end
 end

 % Sort by descending order and set return value
 feature_set(:, s) = sortrows(connectivities, -1);
end

Figure 8: Feature Set Visualization . This is a visualization of an example feature set that will be used by
our model in predicting PMAT scores. The redder a spot is, the higher the connectivity value.

Two Intra/Inter-Network Connectivity

When considering two networks, the complexity of our problem increases significantly. Firstly,
we define “intra-network” connectivity as only examining the connections within a network. Secondly,
we define “inter-network” connectivity as only examining the connections across two networks.

In this sense, when we have two networks X and Y, we can look at the following combination schemes:

● Within network X, within network Y
● Within network X, within network Y, across from X to Y
● Within network X, across from X to Y
● Within network Y, across from X to Y
● Across from X to Y

Also, we can either look at the averaged SC values or the specific unaveraged SC values, when examining
inter-network connectivity.

We denote any of these schemes by labelling our results later with a string with the following format:

Network1_and_Network2_Scheme

An example label would be:
Default_Mode_and_Cingulo_Opercular_amXY_wX_wY

where amXY_wX_wY means:
● within Default Mode
● within Cingulo Opercular
● “across mutual” (averaged) between Default Mode and Cingulo Opercular

While another example label would be:

Default_Mode_and_Cingulo_Opercular_aoXY_wX
where aoXY_wX means:

● within Default Mode
● “across one-way” (unaveraged) between Default Mode and Cingulo Opercular

The number of ROI pairs for amXY or aoXY schemes are simply the product of the sizes of the two
networks. There are N1 x N2 pairs when counting network to network ROI pairs.

This is added with the number of ROI pairs with wX or wY. wX will add (N1 * (N1-1) / 2) pairs to the
total and wY will add (N2 * (N2-1) / 2) pairs.

So a feature set with the scheme: amXY_wX_wY will have (N1 * N2) + (N1 * (N1-1) / 2) + (N2 * (N2-1)
/ 2) pairs of ROI connections.

Structural and Functional Connectivity Interaction

On top of the aforementioned network combinations, we also have both SC matrices and FC
matrices. These can also be combined in the following ways:

● Structural Only (s)
● Functional Only (f)
● Masking the functional data to only include the values that showed either the highest or lowest

structural connectivity (f_hs, f_ls)
● Masking the structural data to only include the values that showed either the highest or lowest

functional connectivity (s_hf, s_lf)
● Interaction by multiplying the structural and functional connectivity values (sxf)

Each of these schemes are implemented in different function scripts (as mentioned earlier, #10 to #18 in
the Scripts folder).

The structural only and functional only schemes are straightforward. Structural only means only the SC
matrices are used; functional only means only the FC matrices are used.

For the masking schemes, either SC or FC ROI connections are sorted from highest to lowest and a 50%
cutoff is used to select the ROI pairs with the highest or lowest connectivity values to mask on the

opposing data. “f_hs” means that the top 50% of structural connections are used to select the functional
data corresponding to those ROI pairs.

For the interaction by multiplying scheme, SC and FC values are multiplied together and treated as
normal afterwards.

Cross-Validation

Now that we have our feature sets ready, we can now begin to train our model. We use a
cross-validation leave-one-out procedure to select training data and testing data sets. This means that we
choose one subject out of the total possible subjects to use for testing, and the rest for training. We build a
model on n-1 subjects’ feature sets and predict the nth subject’s PMAT score, and repeat n times, changing
the nth subject each time.

Model Selection

We use three different regression techniques: Ridge Regression, Support-Vector Regression
(SVR), and LASSO Regression. Each were assessed for highest accuracy of prediction overall for all
subjects. We loop through each feature set to assess predictive power of each model (we discuss how we
do that in the Results section). Three different scripts: 19_NIQ_full_Ridge.m ,
20_NIQ_full_SVR.m , and 21_NIQ_full_Lasso.m were used. These scripts were controlled
using a master script 22_Workspace_Running.m

A sample of the code from NIQ_full_SVR.m is below:

function NIQ_full_SVR(behavioral_var,conn_type,Network_1,Network_2)

% Loop over types of analyses
types = {'s', 'smof_upper', 'smof_lower', 'fmos_upper', 'fmos_lower', 'Interact', 'f'};
val_types = {'M', 'V'};
percent = .5;
for t = 1:size(types, 2)
 for tt = 1:size(val_types, 2)
 % Set variables of interest
 switch nargin
 case 3
 fprintf('Trying intranetwork...\n');
 fprintf('%s...\n', types{t});
 if t == 1
 [subjs_used,classification_patterns] = features_structural(conn_type,
val_types{tt}, Network_1);
 elseif t == 2
 [subjs_used,classification_patterns] = features_smof_upper(conn_type,
val_types{tt}, percent, Network_1);
 elseif t == 3
 [subjs_used,classification_patterns] = features_smof_lower(conn_type,
val_types{tt}, percent, Network_1);
 elseif t == 4

 [subjs_used,classification_patterns] = features_fmos_upper(conn_type,
val_types{tt}, percent, Network_1);
 elseif t == 5
 [subjs_used,classification_patterns] = features_fmos_lower(conn_type,
val_types{tt}, percent, Network_1);
 elseif t == 6
 [subjs_used,classification_patterns] = features_sf_Interact(conn_type,
val_types{tt}, Network_1);
 elseif t == 7 && tt ~= 2
 [subjs_used,classification_patterns] = features_functional(conn_type,
Network_1);
 end

 if t == 7 && tt == 2
 continue
 end

 fprintf('Retrieved feature set.\n');
 case 4
 fprintf('Trying internetwork...\n');
 fprintf('%s...\n', types{t});
 if t == 1
 [subjs_used,classification_patterns] = features_structural(conn_type,
val_types{tt}, Network_1, Network_2);
 elseif t == 2
 [subjs_used,classification_patterns] = features_smof_upper(conn_type,
val_types{tt}, percent, Network_1, Network_2);
 elseif t == 3
 [subjs_used,classification_patterns] = features_smof_lower(conn_type,
val_types{tt}, percent, Network_1, Network_2);
 elseif t == 4
 [subjs_used,classification_patterns] = features_fmos_upper(conn_type,
val_types{tt}, percent, Network_1, Network_2);
 elseif t == 5
 [subjs_used,classification_patterns] = features_fmos_lower(conn_type,
val_types{tt}, percent, Network_1, Network_2);
 elseif t == 6
 [subjs_used,classification_patterns] = features_sf_Interact(conn_type,
val_types{tt}, Network_1, Network_2);
 elseif t == 7 && tt ~= 2
 [subjs_used,classification_patterns] = features_functional(conn_type,
Network_1, Network_2);
 end

 if t == 7 && tt == 2
 continue
 end

 fprintf('Retrieved feature set.\n');
 end

 %% Behavioral Data

 % Initialize paths
 behavioral_dir = '/space/raid6/data/rissman/Nicco/NIQ/Behavioral/';

 % Grab subjects' behavioral data

 fprintf('Grabbing behavioral data...\n');
 cd(behavioral_dir);
 load('all_behave.mat');

 % Initialize a vector for behavioral values for each subject
 temp_behav = zeros(1, length(subjs_used));

 % Make sure non-empty data
 init_subjs_used_size = length(subjs_used);
 s = 1;
 while (s <= init_subjs_used_size)

 % Grab info for subject
 subjectID = subjs_used(s);

 % Grab subject's behavioral value
 temp_behav(s) = all_behave.(['Subject' num2str(subjectID)]).(behavioral_var);

 % If NaN, remove subject from subjs_used and corresponding features
 if (isnan(temp_behav(s)))
 init_subjs_used_size = init_subjs_used_size - 1;
 if (s == 1)
 subjs_used = subjs_used(2:end);
 temp_behav = temp_behav(2:end);
 classification_patterns = classification_patterns(:, 2:end);
 else
 subjs_used = [subjs_used(1:s-1) subjs_used(s+1:end)];
 temp_behav = [temp_behav(1:s-1) temp_behav(s+1:end)];
 classification_patterns = [classification_patterns(:, 1:s-1)
classification_patterns(:, s+1:end)];
 end
 else
 s = s + 1;
 end
 end

 % Cross Validation
 fprintf('Finding selectors...\n');
 behav_vector = temp_behav;
 condensed_regs_of_interest = 1:length(behav_vector);
 [selectors] = enforce_forced_choice(condensed_regs_of_interest);

 %% Classification
 fprintf('Beginning Classification...\n');
 svr_acts = zeros(1, size(selectors, 2));

 for n=1:size(selectors,2)
 current_selector = selectors{n};
 train_idx = find(current_selector == 1);
 test_idx = find(current_selector == 2);

 train_labels = behav_vector(:,train_idx);
 test_labels = behav_vector(:,test_idx);

 train_pats = classification_patterns(:,train_idx);
 test_pats = classification_patterns(:,test_idx);

 fprintf('SVR for n = %d \n', n);

 % SVR
 [model]=svmtrain_NR(train_labels', train_pats','-s 4 -t 0 -c 1 -q');
 [svr_acts(n)] = svmpredict_NR(test_labels',test_pats',model,'-q');
 end

 fprintf('Finishing Classification...\n');

 SVR = corr(svr_acts', behav_vector');

 % Output results
 fprintf('Saving results...\n\n');
 switch nargin
 case 3
 if tt == 1
 save_file = ['/space/raid6/data/rissman/Nicco/NIQ/Results/EXPANSION/'
Network_1 '_' conn_type '_' behavioral_var '_n' num2str(length(subjs_used)) '_' types{t}
'_SVR_Mean.txt'];
 elseif tt == 2
 save_file = ['/space/raid6/data/rissman/Nicco/NIQ/Results/EXPANSION/'
Network_1 '_' conn_type '_' behavioral_var '_n' num2str(length(subjs_used)) '_' types{t}
'_SVR_Volume.txt'];
 end
 case 4
 if tt == 1
 save_file = ['/space/raid6/data/rissman/Nicco/NIQ/Results/EXPANSION/'
Network_1 '_and_' Network_2 '_' conn_type '_' behavioral_var '_n' num2str(length(subjs_used))
'_' types{t} '_SVR_Mean.txt'];
 elseif tt == 2
 save_file = ['/space/raid6/data/rissman/Nicco/NIQ/Results/EXPANSION/'
Network_1 '_and_' Network_2 '_' conn_type '_' behavioral_var '_n' num2str(length(subjs_used))
'_' types{t} '_SVR_Volume.txt'];
 end
 end

 header = {'SVR'};
 data = SVR;

 save_data_with_headers(header,data,save_file);
 end
end

Results

To obtain a metric of model accuracy we correlated the array of predicted PMAT scores with the
matched array of subjects’ actual PMAT scores. This results in an R2 value, the percent of the variance in
PMAT score (and indirectly fluid intelligence) that our model was about to account for.

All of these results were not significant for the Ridge method, and LASSO would not have finished
running in the duration of the quarter. SVR had the highest accuracy out of Ridge and SVR. Output for

each scheme can be found in the Results/EXPANSION folder as text files labelled with the respective
networks and feature set scheme used. Also, by varying the Ridge penalty parameter and SVR cost
parameter, we were able to maximize the effectiveness of each model (check in Other Useful
Scripts/NIQ_full_Ridge_Pen_Varied.m and NIQ_full_SVR_Varied.m).

The following graphs were created using the maximal R2 values from each scheme using SVR.

Figure 9: Network-Specific Predictive Power . The highest predictive power comes from the Default Mode
Network which we hypothesized. * means that the p-value was less than 0.05.

Figure 10: Default Mode Network with Cingulo-Opercular/Salience Networks . With the aoXY_wY
scheme, achieved the highest R2 value of around 14%. * means that the p-value was less than 0.05, **

0.005, *** 0.00005.

When SC and FC were considered independently, only SC within the DMN and Fronto-Parietal Network
(FPN) was predictive of fluid intelligence.

Given our hypotheses about the importance of across-network communication between the DMN and
CON (Salience network was combined due to literature that it has similar properties to CON), we
examined whether including the connectivity between nodes of these networks would improve prediction

of fluid intelligence. Interestingly, when FC data were limited to node pairs with high SC values, FC
became predictive of fluid intelligence. Even more predictive was the interaction between SC and FC.

Conclusion

These results demonstrate that individual differences in the connectivity within and between brain
networks can explain variance in fluid intelligence abilities (particularly with the PMAT). When
examining intra-network effects, we found that structural connectivity was a better predictor of fluid
intelligence than functional connectivity, with reliable effects seen in the DMN and FPN. When
examining inter-network effects, we found that structural connectivity between nodes of the DMN and
CON/SAL networks was particularly informative. Functional connectivity was also informative, but only
when constrained by high structural connectivity values. Most interestingly, the interaction feature set of
both functional and structural values provided the highest predictive power for our model. Using both
types of connectivity was notably more informative than just using either structural or functional
connectivity alone.

The CON/SAL has been shown to be a domain-general, task-control network, while the DMN has

shown to be the opposite, whose decreased activity associates with task control. Perhaps, what our model
has extracted is the efficiency of the CON/SAL’s ability to inhibit the DMN, so that a subject is not
distracted by any internally generated narrative that could distract him/her from engaging in a complex
cognitive task.

Also, given a longer time period to work on this project, we would like to run the same analyses

with the LASSO regression model, as that might prove to be even better than our results that we found
here.

Finally, other studies have shown that brain connectivity (both structural and functional) actually

change over time, possibly due to the dynamic process of myelination and cell birth/death. Abnormal
changes in connectivity have also been shown to lead to diseases like Alzheimer’s and dementia. Brain
connectivity is a very complex subject and these results only scratch the surface of what can be
discovered by it.

