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I. Instructions 
 
For our project, we ran it on Windows 10 using Python 3.5 and the latest Scikit-Learn as of 
December 1, 2016 - version 0.18.1.  The file directory structure is as follows: 
 
/cs145Project 
| 
|-- fkm.py 
|-- preproc.py  
|-- README.txt  
| 
|-- reuters21578/  
    | 
    |-- reut2-000.sgm  
    |-- reut2-001.sgm  
    |-- … 
    |-- reut2-021.sgm  
 
Here, ​fkm.py ​is our main script that handles the semi-supervised fuzzy k-means algorithm; it 
uses ​preproc.py ​to parse and extract the relevant data from the ​.sgm ​ files. It also manages 
a data structure of the articles with the specified labels and also selects the seeds for the fuzzy 
k-means algorithm. The ​README.txt ​ is just a copy of these instructions. 
 
The data in the ​reuters21578 ​ folder contains the dataset downloaded from: 
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html​ as specified in the project 
spec. The ​.sgm ​ files contain the dataset articles in an XML-format. 
 
In order to run our procedure, open up a command-line interface at the root folder of our 
directory, such that the current working directory contains the ​.py ​ files. 
 
Then the following can be run: 

$python fkm.py seedStrat seedFrac  
where ​seedStrat = {1 2 3 4} ​ is the seeding strategy as described in the project spec and 
0 < seedFrac < 1 ​is the proportion of data that will be chosen as seeds. 
 
This should output the pairwise precision, pairwise recall, F1 score, and the number of iterations 
required for the algorithm to converge for the given seed strategy and the given seed fraction. 
 
Some sample output: 

money-fx 
Pairwise Precision: 0.5177797051170858  
Pairwise Recall: 0.8728070175438597  
F1 Score: 0.6499727817093085  

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html


trade 
Pairwise Precision: 0.3564614050303556  
Pairwise Recall: 0.7996108949416343  
F1 Score: 0.4931013797240552  

interest 
Pairwise Precision: 0.3313096270598439  
Pairwise Recall: 0.9009433962264151  
F1 Score: 0.4844641724793913  

Iterations: 15  
 
Sample error message: 

Error: too few arguments entered  
Usage: python fkm.py seedStrat seedFrac  

seedStrat - a number from 1 to 4, see README.txt for  
details 

seedFrac - a number from 0 to 1 (non inclusive),  fraction  
of data to use as seeding data  

 
Also outputted is a text file ​clusters.txt ​ containing each label’s assigned article IDs; these 
are the clusters that our algorithm produced. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



II. Results 
 
The following are plots for each of the types of comparisons that the project spec required. 
For each comparison, we have graphs for each of the labels, and on each graph there is a plot 
for each seeding strategy. 
 
Pairwise precision vs. increasing seed fraction 

 



 
Pairwise recall vs. increasing seed fraction 

 



 

 
 
 
 
 



Pairwise F1 score vs. increasing seed fraction 

 

 



 
Convergence time vs. increasing seed fraction 

 
 
 
 
 



III. Analysis 
 
We are primarily looking at four numbers from each of our cluster iterations.  The numbers 
considered are ​pairwise precision, pairwise recall,​  ​F1 score, ​ and ​convergence time ​ (which we 
would be using the number of iteration till convergence)​.​   Using these numbers we compare it to 
the increasing seed fraction. 
 
Strat. 1: uni-label 
Strat. 2: multi-label (for all corresponding labels) 
Strat. 3: uni-label and multi-label (for all corresponding labels) 
Strat. 4: uni-label and multi-label (randomly for some of its labels) 
 
Pairwise Precision Analysis 
 
money-fx 
Strat. 1 and Strat. 2 both show an upward trend (with Strat. 1 increasing at a faster rate). 
However, Strat. 3 and Strat. 4 both show a downward trend. 
 
interest 
Strat. 1 clearly has an upward trend while the rest has a steady downward to trend.  Important 
to note this is another example of Strat. 2 and 4 appears to be similar. 
 
trade 
Strat. 2 and 4 are again very similar (very sight upward trend).  Strat. 1 has a severe downward 
trend and Strat. 1 appears to maintain a steady trend. 
 
Pairwise Recall Analysis 
 
money-fx 
All strategies appears to have a downward trend (especially Strat. 3 that is trending downwards 
most aggressively). 
 
interest 
All strategies are on a downward trend, however Strat. 3 has a severe downward trend. 
 
trade 
Strat. 2 and 4 are again very similar (very sight downward trend).  However, both Strat. 1 and 3 
have severe downward trend. 
 
 
 
 
 



F1 Score Analysis 
 
money-fx 
Overall all strategies goes in a downward trend, however, Strat. 1, 2, and 4 appears to be 
steady (linear).  Strat. 3 falls sharply a downward trend. 
 
interest 
Strat. 2 and 4 is very similar (both slight downward trend), while Strat. 1 is upward and Strat. 3 is 
downward (severely). 
 
trade 
Strat. 2 and 4 are again very similar, maintaining a steady trend.  However, both Strat. 1 and 3 
have a severe downward trend. 
 
Convergence Time Analysis 
 
The above graph shows that convergence time (in terms of number of loops the algorithm took) 
decreases as the seed fraction increased for all seed strategies. This is expected, with strategy 
3 requiring the least amount of  
 
Overall Analysis 
 
A few things to note in general: 
 
Interestingly, seeding strategies 2 and 4 were very similar as they both used multi-labeled data 
for seeding and also there were only about a fourth of the number of seeding points for 
multi-label. Meaning for seeding purposes, they mostly ended up using very similar seeding 
points due to the fact that there was a relatively low number of articles with multiple labels. 
 
Overall, our group decided that strategies 2 and 4 seems like the best strategies out of the four 
if considering consistency is the most valued quality to clustering.  Throughout the different 
iteration of labels both strategy maintained the same trend throughout different labels which 
implies the stability of the strategy.  However, one negative side to both of these strategies is 
that they both took the longest to converge compared to the other strategies. 
 
On the other hand, strategies 1 and 3 appear to take more drastic values across the board. The 
values for these two strategies may at times outperform strategies 2 and 4, but as a result they 
are a bit more unreliable. We do not know for certain how they will before if we were to 
extrapolate beyond this range of data, so it is better to go with strategies 2 and 4 because they 
had consistent trends and may be better for predicting patterns. 
 
The reason for pairwise recall decreasing overall as seeding fraction increased was due to a 
calculation error in our implementation of the ​calc_metrics ​ function, which found the 



pairwise precision, pairwise recall, and F1 scores of the algorithm. Instead of only counting data 
points within the same cluster, it counted the number of occurrences of the label across the 
entire data set. The more seeds we have, the more total number of pairs we have in the entire 
database, so as we increased seeding fraction, we saw that pairwise recall dropped. Whereas, 
if we looked only at the data points within a same cluster, perhaps the trend might have been 
different. 
 
Our fuzzy K-Means classifier has some points where we believe it could be improved. Although 
we chose labels (​money-fx, interest, trade ​) such that we would have a good number 
of uni-labelled points and a good but lesser number of multi-labelled points, these articles all 
concerned a similar topic. As a result, we believe that these articles would have similar words 
across the different labels, and would not necessarily be easy to differentiate between when 
using a fuzzy K-Means classifier. In addition to this, currently, our algorithm uses a threshold on 
the article-cluster weight in order to determine whether or not it can be considered as part of a 
cluster. A different potential approach would be to compare the weights an article has for each 
cluster and choose the largest and most similar ones to determine the multiple clusters. 


