
Project 1B: Semi-Supervised Fuzzy K-Means
Clustering

CS 145, Prof. Wei Wang

Team: Mining Your Data

Christian Cam - - ​c4740674@gmail.com

Daniel Kho - - ​daniel.j.kho@gmail.com

June Lee - - ​june87lee@ucla.edu

Albert Wang - - ​wang.l.albert@gmail.com

Alvin Vuong - - ​alvin.t.vuong@ucla.edu

mailto:c4740674@gmail.com
mailto:daniel.j.kho@gmail.com
mailto:june87lee@ucla.edu
mailto:wang.l.albert@gmail.com
mailto:alvin.t.vuong@ucla.edu

I. Instructions

For our project, we ran it on Windows 10 using Python 3.5 and the latest Scikit-Learn as of
December 1, 2016 - version 0.18.1. The file directory structure is as follows:

/cs145Project
|
|-- fkm.py
|-- preproc.py
|-- README.txt
|
|-- reuters21578/
 |
 |-- reut2-000.sgm
 |-- reut2-001.sgm
 |-- …
 |-- reut2-021.sgm

Here, ​fkm.py ​is our main script that handles the semi-supervised fuzzy k-means algorithm; it
uses ​preproc.py ​to parse and extract the relevant data from the ​.sgm ​ files. It also manages
a data structure of the articles with the specified labels and also selects the seeds for the fuzzy
k-means algorithm. The ​README.txt ​ is just a copy of these instructions.

The data in the ​reuters21578 ​ folder contains the dataset downloaded from:
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html​ as specified in the project
spec. The ​.sgm ​ files contain the dataset articles in an XML-format.

In order to run our procedure, open up a command-line interface at the root folder of our
directory, such that the current working directory contains the ​.py ​ files.

Then the following can be run:

$python fkm.py seedStrat seedFrac
where ​seedStrat = {1 2 3 4} ​ is the seeding strategy as described in the project spec and
0 < seedFrac < 1 ​is the proportion of data that will be chosen as seeds.

This should output the pairwise precision, pairwise recall, F1 score, and the number of iterations
required for the algorithm to converge for the given seed strategy and the given seed fraction.

Some sample output:

money-fx
Pairwise Precision: 0.5177797051170858
Pairwise Recall: 0.8728070175438597
F1 Score: 0.6499727817093085

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

trade
Pairwise Precision: 0.3564614050303556
Pairwise Recall: 0.7996108949416343
F1 Score: 0.4931013797240552

interest
Pairwise Precision: 0.3313096270598439
Pairwise Recall: 0.9009433962264151
F1 Score: 0.4844641724793913

Iterations: 15

Sample error message:

Error: too few arguments entered
Usage: python fkm.py seedStrat seedFrac

seedStrat - a number from 1 to 4, see README.txt for
details

seedFrac - a number from 0 to 1 (non inclusive), fraction
of data to use as seeding data

Also outputted is a text file ​clusters.txt ​ containing each label’s assigned article IDs; these
are the clusters that our algorithm produced.

II. Results

The following are plots for each of the types of comparisons that the project spec required.
For each comparison, we have graphs for each of the labels, and on each graph there is a plot
for each seeding strategy.

Pairwise precision vs. increasing seed fraction

Pairwise recall vs. increasing seed fraction

Pairwise F1 score vs. increasing seed fraction

Convergence time vs. increasing seed fraction

III. Analysis

We are primarily looking at four numbers from each of our cluster iterations. The numbers
considered are ​pairwise precision, pairwise recall,​ ​F1 score, ​ and ​convergence time ​ (which we
would be using the number of iteration till convergence)​.​ Using these numbers we compare it to
the increasing seed fraction.

Strat. 1: uni-label
Strat. 2: multi-label (for all corresponding labels)
Strat. 3: uni-label and multi-label (for all corresponding labels)
Strat. 4: uni-label and multi-label (randomly for some of its labels)

Pairwise Precision Analysis

money-fx
Strat. 1 and Strat. 2 both show an upward trend (with Strat. 1 increasing at a faster rate).
However, Strat. 3 and Strat. 4 both show a downward trend.

interest
Strat. 1 clearly has an upward trend while the rest has a steady downward to trend. Important
to note this is another example of Strat. 2 and 4 appears to be similar.

trade
Strat. 2 and 4 are again very similar (very sight upward trend). Strat. 1 has a severe downward
trend and Strat. 1 appears to maintain a steady trend.

Pairwise Recall Analysis

money-fx
All strategies appears to have a downward trend (especially Strat. 3 that is trending downwards
most aggressively).

interest
All strategies are on a downward trend, however Strat. 3 has a severe downward trend.

trade
Strat. 2 and 4 are again very similar (very sight downward trend). However, both Strat. 1 and 3
have severe downward trend.

F1 Score Analysis

money-fx
Overall all strategies goes in a downward trend, however, Strat. 1, 2, and 4 appears to be
steady (linear). Strat. 3 falls sharply a downward trend.

interest
Strat. 2 and 4 is very similar (both slight downward trend), while Strat. 1 is upward and Strat. 3 is
downward (severely).

trade
Strat. 2 and 4 are again very similar, maintaining a steady trend. However, both Strat. 1 and 3
have a severe downward trend.

Convergence Time Analysis

The above graph shows that convergence time (in terms of number of loops the algorithm took)
decreases as the seed fraction increased for all seed strategies. This is expected, with strategy
3 requiring the least amount of

Overall Analysis

A few things to note in general:

Interestingly, seeding strategies 2 and 4 were very similar as they both used multi-labeled data
for seeding and also there were only about a fourth of the number of seeding points for
multi-label. Meaning for seeding purposes, they mostly ended up using very similar seeding
points due to the fact that there was a relatively low number of articles with multiple labels.

Overall, our group decided that strategies 2 and 4 seems like the best strategies out of the four
if considering consistency is the most valued quality to clustering. Throughout the different
iteration of labels both strategy maintained the same trend throughout different labels which
implies the stability of the strategy. However, one negative side to both of these strategies is
that they both took the longest to converge compared to the other strategies.

On the other hand, strategies 1 and 3 appear to take more drastic values across the board. The
values for these two strategies may at times outperform strategies 2 and 4, but as a result they
are a bit more unreliable. We do not know for certain how they will before if we were to
extrapolate beyond this range of data, so it is better to go with strategies 2 and 4 because they
had consistent trends and may be better for predicting patterns.

The reason for pairwise recall decreasing overall as seeding fraction increased was due to a
calculation error in our implementation of the ​calc_metrics ​ function, which found the

pairwise precision, pairwise recall, and F1 scores of the algorithm. Instead of only counting data
points within the same cluster, it counted the number of occurrences of the label across the
entire data set. The more seeds we have, the more total number of pairs we have in the entire
database, so as we increased seeding fraction, we saw that pairwise recall dropped. Whereas,
if we looked only at the data points within a same cluster, perhaps the trend might have been
different.

Our fuzzy K-Means classifier has some points where we believe it could be improved. Although
we chose labels (​money-fx, interest, trade ​) such that we would have a good number
of uni-labelled points and a good but lesser number of multi-labelled points, these articles all
concerned a similar topic. As a result, we believe that these articles would have similar words
across the different labels, and would not necessarily be easy to differentiate between when
using a fuzzy K-Means classifier. In addition to this, currently, our algorithm uses a threshold on
the article-cluster weight in order to determine whether or not it can be considered as part of a
cluster. A different potential approach would be to compare the weights an article has for each
cluster and choose the largest and most similar ones to determine the multiple clusters.

